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An unconditionally stable semi-Lagrangian method for
the spherical atmospherical shallow water equations

M. F. Carfora*,1
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SUMMARY

A semi-implicit, semi-Lagrangian, mixed finite difference–finite volume model for the shallow water
equations on a rotating sphere is introduced and discussed. Its main features are the vectorial treatment
of the momentum equation and the finite volume approach for the continuity equation. Pressure
and Coriolis terms in the momentum equation and velocity in the continuity equation are treated semi-
implicitly. Moreover, a splitting technique is introduced to preserve symmetry of the numerical scheme.
An alternative asymmetric scheme (without splitting) is also introduced and the efficiency of both is
discussed. The model is shown to be conservative in geopotential height and unconditionally stable for
0.55u51. Numerical experiments on two standard test problems confirm the performance of the
model. Copyright © 2000 John Wiley & Sons, Ltd.

KEY WORDS: finite difference; finite volume; rotating sphere; semi-implicit; semi-Lagrangian; shallow
water equations

1. INTRODUCTION

The semi-Lagrangian treatment of advection is currently used in several global and regional
models for numerical weather prediction (NWP); among them we cite here just the Australian
Global Assimilation and Prediction system, the UK MetOffice Unified Model, the National
Center for Atmospheric Research (NCAR)/Penn State mesoscale MM5 model and the
European Centre for Medium-Range Weather Forecast (ECMWF) spectral model. Advan-
tages of the semi-Lagrangian approach have been exhaustively presented in the review by
Staniforth and Côté [1] and more recently discussed in Bartello and Thomas [2].

In particular, application of the semi-Lagrangian scheme to global grid point models is
described in McDonald and Bates [3] for the shallow water equations and in Bates et al. [4] for
primitive equations.
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Shallow water equations have been often used in NWP to test new numerical methods. In
this paper we introduce a numerical model of the inviscid shallow water equations for
atmospherical circulation. It can be an attractive alternative over existing models owing to its
specific features, which are not yet considered in the meteorological literature

– the hybrid approach we use (finite volume–finite difference) guarantees fluid mass conser-
vation while retaining ease of implementation;

– the problems arising from the spherical geometry, summarized in the expression ‘pole
problem’, i.e. the polar convergence of the meridians and the consequent singularity of
velocity components at the poles, are faced by discretization of the momentum equations in
their vectorial form, as in Bates et al. [5], but resulting in simpler corrective terms;

– the semi-implicit differencing of the Coriolis and pressure terms in the momentum equa-
tions guarantees unconditional stability to the numerical scheme; we also introduce a
splitting technique to preserve symmetry of the system to be solved;

– the semi-Lagrangian treatment of advection is combined with an accurate reconstruction of
the trajectories, due to a sub-stepping procedure that arises from a paper by Casulli [6],
where a semi-Lagrangian numerical model of the shallow water equations for oceanic
circulation is devised.

The organization of the paper is as follows: Section 2 is devoted to the analysis of the
numerical method, including discretization of the equations, splitting of the momentum
equation and accurate reconstruction of characteristics curves for the evaluation of semi-
Lagrangian terms. Section 3 contains a linear stability analysis of the method. In Section 4, the
numerical solution of the system is analysed and the conditioning of the resulting linear system
evaluated. Finally, Section 5 shows the performance of the method on some test problems.

2. THE NUMERICAL METHOD

Let us consider the inviscid shallow water equations in spherical components

Á
Ã
Í
Ã
Ä

dV
dt

= − fk×V−9hF

(F
(t

+9h ·((F−Fs)V)=0
(1)

Here V (u, 6) is the wind field, with curvilinear components toward the east and the north
respectively; it means that we use curvilinear co-ordinates x and y, with

dx=R cos 8 dl, dy=R d8

l, 8 are longitude and latitude respectively and R is Earth’s radius; f is the Coriolis parameter,
F(x, y, t) is the geopotential height field, dF=g dZ, where Z is the height field and g is gravity
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acceleration; Fs(x, y) is the orography field, Fs=gZs, with Zs being height of mountains.
Finally, 9h is the horizontal gradient operator

9h=
� (
(x

,
(

(y
�

=
� 1

R cos 8

(

(l
,

1
R
(

(8

�
We shall operate in a mixed finite difference–finite volume environment. The grid will be

uniform in (l, 8) co-ordinates and staggers the variables using an Arakawa C-grid: with
respect to the F grid, the u grid is shifted half a length eastwards and the 6 grid is shifted half
a length northwards.

2.1. Discretization of the geopotential height conser6ation equation

We solve the equation for geopotential height in conservative form. It is important to develop
algorithms that preserve this property, also from the numerical standpoint. Consider the
continuity equation in the following integral form:

&
D

(F
(t

dx dy+
&

D

9h ·((F−Fs)V) dx dy=0 (2)

where integrals are taken over any horizontal domain D.
By considering Di, j as the grid cell centred around the variable Fi, j, whose corners are

clockwise labelled A, B, C, D, and using Green’s formula, Equation (2) results in

&
Di, j

(F
(t

dx dy+
& A

B

(F−Fs)u dy−
& C

D

(F−Fs)u dy+
& D

A

(F−Fs)6 dx

−
& B

C

(F−Fs)6 dx=0 (3)

where orthogonality of cell boundaries with velocity components has been exploited. We recall
that, due to our definition of the grid, the latitudinal grid length Dy (i.e. length of CD and AB)
is constant, whereas Dxj (the longitudinal diameter of a cell) varies with latitude. We indicate
length AD by Dxj+1/2 and length CB by Dxj−1/2.

The following finite volume approximations will now be considered in Equation (3): the
transient term

&
Di, j

(F
(t

dx dy:
Fi, j

n+1−Fi, j
n

Dt
Aj

is obtained by first-order finite difference in time and assuming F is constant over the cell. Aj

is the area of the grid cell:

Aj=2R sin
D8

2
Dxj=DxjDy

sin(D8/2)
D8/2

(4)
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The divergence terms are discretized implicitly in time for stability reasons. We introduce an
implicitness parameter u� [0, 1] and put

& A

B

(F−Fs)u dy:Hi+1/2, jDy(uui+1/2, j
n+1 + (1−u)ui+1/2, j

n )

& C

D

(F−Fs)u dy:Hi−1/2, jDy(uui−1/2, j
n+1 + (1−u)ui−1/2, j

n )

& D

A

(F−Fs)6 dx:Hi, j+1/2Dxj+1/2(u6 i, j+1/2
n+1 + (1−u)6 i, j+1/2

n )

& B

C

(F−Fs)6 dx:Hi, j−1/2Dxj−1/2(u6 i, j−1/2
n+1 + (1−u)6 i, j−1/2

n )

where Hi, j=Fi, j
n −Fi, j

s . Approximations are obtained by supposing geopotential height and
velocity field constant over the boundaries of the cell; the values of geopotential height on the
boundaries can be obtained by averaging the corresponding adjacent values. The following
approximation of Equation (3) comes out for quadrangular cells:

Fi, j
n+1−Fi, j

n

Dt
Aj+Hi+1/2, jDy(uui+1/2, j

n+1 + (1−u)ui+1/2, j
n )

−Hi−1/2, jDy(uui−1/2, j
n+1 + (1−u)ui−1/2, j

n )+Hi, j+1/2Dxj+1/2(u6 i, j+1/2
n+1 + (1−u)6 i, j+1/2

n )

−Hi, j−1/2Dxj−1/2(u6 i, j−1/2
n+1 + (1−u)6 i, j−1/2

n )=0 (5)

The approximation still holds for triangular cells ( j=1 and j=Ny), where we have Dx1/2=0
and DxNy+1/2=0 and so the value of the variable 6 at only one location is involved.

As is well known, the lack of conservation is a common problem for semi-Lagrangian
methods (see, for example, Staniforth and Côté [1]). Even the best schemes do not possess this
property, although they may show interesting features in terms of accuracy. It is quite easy to
prove that the adopted discretization procedure ensures conservation of total geopotential
height. Indeed, if we sum Equation (5) over i and j, we obtain after cancellation of opposite
terms

%
i, j

AjFi, j
n+1=%

i, j

AjFi, j
n −uDtDy

�%
j

HNx+1/2, juNx+1/2, j
n+1 −H1/2, ju1/2, j

n+1n
− (1−u)DtDy

�%
j

HNx+1/2, juNx+1/2, j
n −H1/2, ju1/2, j

n n
and since for the periodicity in longitude of the grid at every time level k it is uNx+1/2, j

k =u1/2, j
k ,

we finally have
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%
i, j

AjFi, j
n+1=%

i, j

AjFi, j
n

This result ensures that, in the discrete model, the total geopotential height is conserved
during the numerical integration. Numerical experiments confirmed this exact conservation
within the machine rounding.

2.2. Discretization of the momentum equation

We discretize the momentum equation starting from its vectorial form. This is an attractive
choice for the semi-Lagrangian approach in spherical co-ordinates as we use a co-ordinate
system that rotates with the Earth. Thus, unit vectors in the horizontal (i, j), (i�, j�) at the
arrival and departure point of characteristic lines respectively, in general do not coincide.
Derivation of the scalar equations for velocity components will be now described in detail.
This procedure is similar to the approach of Bates et al. [5] but with different (and simpler)
projection coefficients for the three-dimensional vectors on the Earth’s surface (Equations (7)).
If u� [0, 1] is again the implicitness parameter, we have

Vn+1=V�n −uDt [ fk×V+9hF]n+1− (1−u)Dt [ fk×V+9hF]�n (6)

where symbols ( · )�n refer to values of the corresponding variables at departure points of the
characteristic curves ending at time tn+1 in grid points. Since these departure points will
generally not coincide with grid points, corresponding values of the variables must be found by
interpolation.

To resolve Equation (6) into components we need to express (i�, j�, k�) in terms of the unit
vector triad (i, j, k) at time tn+1; it means that in the following the term ‘horizontal’ refers to
the arrival point of the trajectory.

Now, if A(l, 8) and B(l�, 8�) are arrival and departure points of the trajectory respec-
tively, the relationship between the related unit vectors is

Ã
Ã

Ã

Á

Ä

i
j
k
Ã
Ã

Ã

Â

Å

=RA,BÃ
Ã

Ã

Á

Ä

i�
j�
k�

Ã
Ã

Ã

Â

Å

where the rotation RA,B is given by

Á
Ã
Ã
Ã
Ä

cos dl −sin 8� sin dl cos 8� sin dl

sin 8 sin dl cos 8� cos 8+sin 8� sin 8 cos dl sin 8� cos 8−cos 8� sin 8 cos dl

−cos 8 sin dl cos 8� sin 8−sin 8� cos 8 cos dl sin 8� sin 8+cos 8� cos 8 cos dl

Â
Ã
Ã
Ã
Å

with dl denoting (l�−l).
As we are interested only in the horizontal part of the transform, we need only consider the

sub-matrix obtained from the first two rows and two columns of RA,B, whose elements we
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indicate by ri, j. They depend on the co-ordinates (l, 8), (l�, 8�) of arrival and departure
points of the trajectory; in the same notation of Equation (6), they are

r1,1=cos dl

r1,2= −sin dl sin 8

r2,1=sin dl sin 8�

r2,2=cos dl sin 8 sin 8�+cos 8 cos 8� (7)

If now we indicate by (Xu)n+1, (X6)n+1 the two horizontal components of the left-hand side
of Equation (6) and by (Yu)�n , (Y6)�n the corresponding components of the right-hand side

Xu
n+1=

�
u− fu6Dt+uDt

(F
(x
nn+1

X 6n+1=
�
6+ fuuDt+uDt

(F
(y
nn+1

(Yu)�n =
�

u+ f(1−u)6Dt− (1−u)Dt
(F
(x
n
�

n

(Y6)�n =
�
6− f(1−u)uDt− (1−u)Dt

(F
(y
n
�

n

we have

�Xu

X6

�n+1

=
�r1,1 r1,2

r2,1 r2,2

��Yu

Y6

�
�

n

(8)

From system (8) one can formally obtain new values un+1, 6n+1 in all the grid points,
depending on values of Fn+1 in surrounding points. Hence, we find

�u
6

�n+1

= −
uDt

1+ f 2u2Dt2

� 1 fuDt
− fuDt 1

��Fx

Fy

�n+1

+
�Lu

L6

�
(9)

where the first scalar equation is collocated on the u grid and the second one on the 6 grid. To
simplify the notation we indicated by L the terms to be evaluated at departure points of the
characteristic lines
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�Lu

L6

�
=

1
1+ f 2u2Dt2

� 1 fuDt
−fuDt 1

��r1,1 r1,2

r2,1 r2,2

�ÁÃ
Ã
Ã
Ä

u+ f(1−u)6Dt−(1−u)Dt
(F
(x

6− f(1−u)uDt−(1−u)Dt
(F
(y

Â
Ã
Ã
Ã
Å�

n

(10)

Now we discretize the spatial derivatives of F with centred finite differences

�(F
(x

�
i+1/2, j

=
Fi+1, j−Fi, j

Dxj�(F
(y

�
i+1/2, j

=
Fi+1/2, j+1/2−Fi+1/2, j−1/2

Dy�(F
(x

�
i, j+1/2

=
Fi+1/2, j+1/2−Fi−1/2, j+1/2

Dxj+1/2�(F
(y

�
i, j+1/2

=
Fi, j+1−Fi, j

Dy

Once we have chosen a suitable interpolation formula for values of geopotential F at
half-indexes, we finally obtain the expressions for un+1, 6n+1. For simplicity’s sake we use
linear interpolation, i.e. the mean of the four surrounding values; in this case, the resulting
values of ui+1/2, j

n+1 , 6 i, j+1/2
n+1 each depend on the unknown values of Fn+1 in the six neighbouring

grid points. Then, substitution of un+1 and 6n+1 in the approximated continuity equation (5)
leads to a nine-point scheme for Fn+1

[Aj+u2Dt2(Ci+1/2, j+Ci−1/2, j+Di, j+1/2+Di, j−1/2)]Fi,j
n+1

−u2Dt2(Ci+1/2, j−uDt(Gi, j+1/2−Gi, j−1/2))Fi+1,j
n+1

−u2Dt2(Ci−1/2, j+uDt(Gi, j+1/2−Gi, j−1/2))Fi−1,j
n+1

−u2Dt2(Di, j+1/2+uDt(Ei+1/2, j−Ei−1/2, j))Fi,j+1
n+1

−u2Dt2(Di, j−1/2−uDt(Ei+1/2, j−Ei−1/2, j))Fi,j−1
n+1 −u3Dt3(Ei+1/2, j−Gi, j+1/2)Fi+1,j+1

n+1

−u3Dt3(−Ei+1/2, j+Gi, j−1/2)Fi+1,j−1
n+1 −u3Dt3(−Ei−1/2, j+Gi, j+1/2)Fi−1,j+1

n+1

−u3Dt3(Ei−1/2, j−Gi, j−1/2)Fi−1,j−1
n+1

=AjFi, j
n −(1−u)Dt [Dy(Hi+1/2, ju i+1/2, j

n −Hi−1/2, ju i−1/2, j
n )+Dxj+1/2Hi, j+1/26 i, j+1/2

n

−Dxj−1/2Hi, j−1/26 i, j−1/2
n ]−uDt [Dy(Hi+1/2, jLi+1/2, j

u −Hi−1/2, jLi−1/2, j
u )

+Dxj+1/2Hi, j+1/2Li, j+1/2
6 −Dxj−1/2Hi, j−1/2Li, j−1/2

6 ] (11)

where
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Ci+1/2, j=
Hi+1/2, j

1+ f j
2u2Dt2

Dy
Dxj

Di, j+1/2=
Hi, j+1/2

1+ f j+1/2
2 u2Dt2

Dxj+1/2

Dy

Ei+1/2, j=
1
4

fj

1+ f j
2u2Dt2 Hi+1/2, j

Gi, j+1/2=
1
4

fj+1/2

1+ f j+1/2
2 u2Dt2 Hi, j+1/2 (12)

2.3. Splitting of the momentum equation

The choice of discretizing implicitly in time Coriolis and pressure terms in the momentum
equation leads to the presence of asymmetric extra-diagonal terms in system (11). These terms,
and the presence of ‘mixed’ derivatives of the geopotential, Fy in the u-equation and Fx in the
6-equation, increase the computational effort for the solution of the system. So it is interesting
to consider a simplifying approach (splitting technique), and to evaluate the balance between
reduced computational cost and loss of accuracy. The basic idea is to split the momentum
equation in two parts by considering the total derivative of velocity as the sum of two terms:
first (step 1) we take into account only the contribution due to Coriolis terms; then (step 2) the
contribution due to pressure terms. Formally, we solve

Vsplit
n+1=V�n −u1Dt [ fk×V]split

n+1− (1−u1)Dt [ fk×V]�n (13)

and then

Vn+1=Vsplit
n+1−uDt9hFn+1− (1−u)Dt9hFn (14)

coupled with Equation (5). We stress that we introduced two different implicitness parameters
(u and u1) for the two steps; this choice will be explained by stability considerations in the next
section.

The resulting two-step scheme is clearly first-order in time. It is possible, however, to
generalize it to a second-order scheme. Our experience in simplified tests [7] suggests that the
introduction of a second-order in time scheme should not improve the overall performance of
the method; comparison between first- and second-order schemes for characteristics recon-
struction (presented in the section devoted to numerical experiments) confirms this suggestion.
However, we intend to investigate further this kind of scheme in a forthcoming paper.

The introduction of the splitting technique leads to some simplifications in system (11). In
fact, Equation (9) reduces to

�u
6

�n+1

+uDt
�Fx

Fy

�n+1

=
�Lu

L6

�
− (1−u)Dt

�Fx

Fy

�
�

n

(15)
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where now the expressions L contain only Coriolis terms

�Lu

L6

�
=

1
1+ f 2u1

2Dt2

� 1 fu1Dt
− fu1Dt 1

��r1,1 r1,2

r2,1 r2,2

��u+ f(1−u1)6Dt
6− f(1−u1)uDt

�
�

n

(16)

It follows that system (11) reduces to

[Aj+u2Dt2(Ci+1/2, j+Ci−1/2, j+Di, j+1/2+Di, j−1/2)]Fi,j
n+1− [u2Dt2Ci+1/2, j ]Fi+1,j

n+1

− [u2Dt2Ci−1/2, j ]Fi−1,j
n+1 − [u2Dt2Di, j+1/2]Fi,j+1

n+1 − [u2Dt2Di, j−1/2]Fi,j−1
n+1

=AjFi, j
n − (1−u)Dt [Dy(Hi+1/2, ju i+1/2, j

n −Hi−1/2, ju i−1/2, j
n )

+Dxj+1/2Hi, j+1/26 i, j+1/2
n −Dxj−1/2Hi, j−1/26 i, j−1/2

n ]−uDt [Dy(Hi+1/2, jLi+1/2, j
u

−Hi−1/2, jLi−1/2, j
u )+Dxj+1/2Hi, j+1/2Li, j+1/2

6 −Dxj−1/2Hi, j−1/2Li, j−1/2
6 ] (17)

where the same notations of system (11) have been used, except for the terms L, defined by
Equation (16).

2.4. Semi-Lagrangian terms

This section is devoted to the evaluation of ‘semi-Lagrangian terms’ L defined by Equations
(10) and (16), requiring velocity components u�

n and 6�n at departure points of characteristic
lines. This Lagrangian procedure goes through two steps: determination of the departure
points of characteristic lines and evaluation of variables in these points. Then we firstly need
to integrate (backward in time) the following system from time tn+1 to tn at any vertex of the
u grid and 6 grid in order to determine departure points in both u and 6 grids:

Á
Ã
Í
Ã
Ä

R
d
dt

l cos 8=u(l, 8)

R
d8

dt
=6(l, 8)

(18)

The choice of integrating the system in variables l, 8 rather than in x, y is suggested by the
differences in the geometry of the grid cells in the two planes (l, 8) and (x, y) and it is much
more accurate in practice. Since the overall numerical scheme is O(Dt) accurate, a simple
first-order algorithm will suffice for the integration of the system (18); however, we consider
also a more accurate numerical algorithm, based on a second-order Runge–Kutta method.

In both procedures we fix the tracking sub-time steps t (k) by the conditions

t (k)=
Dt
Nt

, Nt=1+
�
Dt max

i, j

�ui+1/2, j
n

Dxj

,
ui−1/2, j

n

Dxj

,
6 i, j+1/2

n

Dy
,
6 i, j−1/2

n

Dy
�n

which ensures that, in any sub-step, Courant numbers do not become greater than one.
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This sub-stepping procedure is not a common choice. In many atmospheric circulation
models that use a semi-Lagrangian approach [1], the characteristic lines are approximated with
straight lines, whose direction is determined iteratively. The method we use was introduced by
Casulli [6] for the numerical solution of shallow water equations in plane geometry and was
modified by Amato and Carfora [7] to adapt to spherical geometry, with particular attention
to the treatment of singularity of the grid.

Now it is possible to see that, in the case of Courant numbers not greater than one, the
vectorial correction of the Lagrangian terms does not introduce significant improvements in
the numerical solution. Indeed, if in Equation (16) we do not perform the correction, matrix
(r)i, j must be substituted by the identity matrix. In this case, the error is ��(r)i, j−I2�� and it is
clear that

�r1,1−1�5 ��(r)i, j−I2��25 ��RA,B−I3��2

Now, the eigenvalues of RA,B are given by (1, a9Ib), with a2+b2=1 and 2a=Tr(RA,B)−
1 (Tr stands for the trace of a matrix). Thus, if we define, as usual, the spectral radius r of a
matrix as the maximum modulus of its eigenvalues, we obtain

r2(RA,B−I3)= (a−1)2+b2=3−Tr(RA,B)=4− (1+cos dl)(1+cos d8)

and, recalling the expression of r1,1 and the fact that RA,B−I3 is a normal matrix, so its
spectral radius coincides with its L2-norm, we finally obtain

1−cos dl5 ��(r)i, j−I2��25 (4− (1+cos dl)(1+cos d8))1/2

which means, for dl and d8 tending to zero

O(dl)25 ��(r)i, j−I2��25O(dl)+O(d8)

As a consequence, in the sub-stepping procedure, where Courant numbers are not greater
than one, the error introduced by the absence of vectorial correction is not greater than the
error (Dl, D8) due to spatial discretization.

In order to evaluate u, 6 at the foot of characteristic lines, an interpolation procedure has to
be invoked, because points of the characteristic curves generally do not coincide with grid
points. Two interpolation schemes have been considered: bilinear and bicubic (Lagrange type).
In both schemes we use the surrounding points; for grid cells near to the Poles this means that
we resort to points located across the Pole. In this case, the scheme for u, 6 differs from the
one for F, as crossing the Pole we have to take into account the change of the conventional
direction in the velocity components. We have shown by extensive tests presented in a previous
work [7] on the simpler problem of the semi-Lagrangian treatment of advection on the sphere
that, in general, the regions of higher error level do not coincide with the numerical poles, but
rather with medium (numerical) latitudes. This confirms the good approximation reached in
pole regions, mainly in the case of cubic interpolation. The introduction of accurate spatial and
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temporal approximation dramatically reduces the error: in the same paper we compared the
bilinear scheme with the bicubic one and found a growth of accuracy of about three significant
digits.

3. STABILITY ANALYSIS

We perform the von Neumann stability analysis of the model equations (5) and (15) for the
case of a resting basic state on a tangent plane ( f= f0=constant). Discretization of the
linearized shallow water equations leads to the system

ui+1/2, j
n+1 +uKjDt(Ci+1, j

n+1 −Ci, j
n+1)=Li+1/2, j

u − (1−u)KjDt(Ci+1, j
n −Ci, j

n )

6 i, j+1/2
n+1 +uKDt(Ci, j+1

n+1 −Ci, j
n+1)=Li, j+1/2

6 − (1−u)KDt(Ci, j+1
n −Ci, j

n )

Ci, j
n+1+uKjDt(ui+1/2, j

n+1 −ui−1/2, j
n+1 )+uKDt(6 i, j+1/2

n+1 −6 i, j−1/2
n+1 )

=Ci, j
n − (1−u)KjDt(ui+1/2, j

n −ui−1/2, j
n )− (1−u)KDt(6 i, j+1/2

n −6 i, j−1/2
n ) (19)

where Kj=
H( /Dxj ; K=
H( /Dy ; C=F/
H( and H( is the mean geopotential height. The
terms Lu, L6 are to be specified according to the order of the interpolation used in the
semi-Lagrangian phase. We have also assumed that Aj=DxjDy and that Dxj+1/2=Dxj=
Dxj−1/2.

Then we introduce a Fourier mode for the dependent variables u, 6 and C and carry out a
stability analysis on the corresponding amplitude functions. We write the equations for a single
mode w̄n eIix eIjy, where w̄n is the amplitude of the variable w (w standing for u, 6, C) at the
time level n. After some simplification, the system

Bw̄n+1=Cw̄n

where at the time level k

w̄k= (ū k, 6̄k, C( k)

B=

Á
Ã
Ã
Ã
Ä

1 0 2IuDtKj sin(x/2)
0 1 2IuDtK sin(y/2)

2IuDtKj sin(x/2) 2IuDtK sin(y/2) 1

Â
Ã
Ã
Ã
Å

and

Á
Ã
Ã
Ã
Í
Ã
Ã
Ã
Ä

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 527–558



M. F. CARFORA538

C=

Á
Ã
Ã
Ã
Ä

c1 c2 −2I(1−u)DtKj sin(x/2)
c3 c4 −2I(1−u)DtK sin(y/2)

−2I(1−u)DtKj sin(x/2) −2I(1−u)DtK sin(y/2) 1

Â
Ã
Ã
Ã
Å

where coefficients ci depend on the first part of the splitting procedure as described by
Equation (16). For completeness, we recall here their expression

�c1 c2

c3 c4

�
=E

1
1+ f 2u1

2Dt2

� 1 fu1Dt
− fu1Dt 1

�
·
�r1,1 r1,2

r2,1 r2,2

�� 1 f(1−u1)Dt
− f(1−u1)Dt 1

�
(20)

where E is the amplification factor of the interpolation procedure (in our case �E �=1).
To prove the stability of the numerical method we have to show that the L2-norm of the

amplification matrix B−1C is not greater than one.
First of all, we decompose matrix C as C=C1+C2, where

C1=

Á
Ã
Ã
Ã
Ä

c1 c2 0
c3 c4 0
0 0 1

Â
Ã
Ã
Ã
Å

C2=

Á
Ã
Ã
Ã
Ä

0 0 −2I(1−u)DtKj sin(x/2)
0 0 −2I(1−u)DtK sin(y/2)

−2I(1−u)DtKj sin(x/2) −2I(1−u)DtK sin(y/2) 0

Â
Ã
Ã
Ã
Å

In order to prove that the considered numerical method is unconditionally stable with a
suitable choice of the implicitness parameters u and u1 and to give a sharp estimate of the
instability due to Coriolis terms, we need some preliminary results.

Lemma 1

��B−1��2=1

Proof
Since the real part of matrix B is the identity matrix and its imaginary part is symmetric, B is
a normal matrix and so is B−1. Then, their L2-norms coincide with their spectral radius and
it suffices to evaluate their eigenvalues to prove the lemma.

It is easy to show that the eigenvalues of B (n1, n2, n3) are all outside the unit open circle,
since they are given by

n1=1, n2,3=192IuDt
Kj
2 sin2(x/2)+K2 sin2(y/2)
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Since the eigenvalues of B−1 are the reciprocals of the eigenvalues of B, the spectral radius
of B−1 is equal to one. 

Lemma 2

��C1��25max
�

1,
'1+ f 2(1−u1)2Dt2

1+ f 2u1
2Dt2

�
Proof
Since

��C1��1=max
j

%
i

�ci, j �=max(��C3,3��1, 1)

��C1���=max
i

%
j

�ci, j �=max(��C3,3���, 1)

where C3,3 denotes the sub-matrix determined by the first two rows and columns of C1. By the
equivalence of norms it is also

��C1��2=max(��C3,3��2, 1)

Then, from Equation (20), we have

��C3,3��25

(1+ f 2u1

2Dt2)(1+ f 2(1−u1)2Dt2)
1+ f 2u1

2Dt2 ��ri, j ��25'1+ f 2(1−u1)2Dt2

1+ f 2u1
2Dt2

since ��ri, j ��25 ��RAB ��2=1. 

This completely proves the lemma.

Lemma 3

��C2��252
�

H( � 1
Dx1

2+
1

Dy2

�n1/2

(1−u)Dt

Proof
It is easy to see that C2 is also a normal matrix. Its eigenvalues are

n1=0, n2,3=92I(1−u)Dt
Kj
2 sin2(x/2)+K2 sin2(y/2)

Then we have

��C2��2=r(C2)52(K1
2+K2)1/2(1−u)Dt=2

�
H( � 1

Dx1
2+

1
Dy2

�n1/2

(1−u)Dt 
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The main result easily follows from these lemmas. Indeed, the following theorem holds:

Theorem 1
It is

15 ��B−1C ��25max
�

1,
'1+ f 2(1−u1)2Dt2

1+ f 2u1
2Dt2

�
+2

�
H( � 1

Dx1
2+

1
Dy2

�n1/2

(1−u)Dt (21)

Then, the considered numerical method is unconditionally stable for u=1 provided that
u1� [0.5, 1]. Moreover, for u1� [0, 0.5) we have

��B−1C ��2:1+ f 2Dt2 (22)

Proof
To prove the lower bound in Equation (21), consider the particular case of the zero mode in
Fourier analysis (x=y=0). In this case, the amplification matrix B−1C reduces to matrix C1,
whose norm, from Lemma 2, is not less than one.

By application of the usual norm inequalities, and by Lemma 1, it is

��B−1C ��25 ��B−1��2 · ��C ��25 ��C ��25 ��C1��2+ ��C2��2

Then, by application of Lemmas 2 and 3, the upper bound in Equation (21) also holds.
Now, in the case u=1, it is C2=0 and

��B−1C ��25 ��C1��25max
�

1,
'1+ f 2(1−u1)2Dt2

1+ f 2u1
2Dt2

�
The maximum of this quantity is achieved for u1=0 when we have (by Taylor expansion)

��B−1C ��25
1+ f 2Dt2=1+
1
2

f 2Dt2+O(Dt4)

whereas, for u1� [0.5, 1], it is

��B−1C ��251

and then, using both the bounds, ��B−1C ��2=1, i.e. unconditional stability. 
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4. COMPUTATIONAL ISSUES

4.1. Poles treatment

We include here some considerations on the numerical treatment of cells containing poles
(triangular cells). Owing to the definition of the grid, Dxj"0, j=1, . . . , Ny. Let us consider
the South Pole: a cell containing the Pole ( j=1) physically degenerates to a triangular cell,
whose lower vertex is given by the Pole. Integral representation (3) still holds and the integral
over the cell lower boundary becomes null, so the flux on that boundary need not be
considered. Similar arguments hold for the North Pole. It comes out that all the involved
coefficients must vanish for j=1

2 and for j=Ny+
1
2 (values corresponding to the South and

North Pole respectively) so that Equation (11) and correspondingly Equation (17) hold for all
cells, including upper and lower ones, provided that these positions are set. An important
consequence is that geopotential height and, in particular, the y component of velocity, are not
required on the poles, totally avoiding the difficulties due to the singularity of the transform
to polar co-ordinates. Then no ‘special treatment’ of the Poles, such as the introduction of an
auxiliary (rotated) co-ordinate system for trajectories near the Poles as in Bates et al. [5], is
required.

Figure 1. Contour lines of the true geopotential height field of the test problem.
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Figure 2. Contour lines of the true (zonal) velocity field of the test problem.

4.2. Analysis of the algebraic system

To obtain the numerical solution of system (17) we have to order the Nx ·Ny equations for the
unknowns Fi, j and to solve a linear system.

Therefore, we define the matrix A of the coefficients of the system by the following
notations:

– row ak contains the coefficients of all the unknowns that appear in equation (i, j ), with
k= (i−1)Ny+ j ;

– column ah contains the coefficients of the unknown (i, j ), with h= (i−1)Ny+ j, in all the
equations where it appears.

In each row of A there are at most five non-zero entries; they could be obtained directly
from system (17); however, we write them out here for completeness, referring to Equations
(12) for the detailed description of coefficients Ci, j and Di, j

ah,h=Aj+u1
2Dt2(Ci+1/2, j+Ci−1/2, j+Di, j+1/2+Di, j−1/2)

ah,h+Ny
= −u1

2Dt2Ci−1/2, j=ah+Ny,h

ah,h+1= −u1
2Dt2Di, j−1/2=ah+1,h
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Then, matrix A is

– symmetric;
– diagonally dominant, as the quantity ai,i−�j" i �ai, j � representing the area Ak of a grid cell

(with k= i/Ny+1), is obviously positive;
– sparse and band-structured, as there are only seven diagonals with non-zero entries (for

periodicity reasons, due to the spherical geometry, the five non-zero entries on each row
spread out in seven diagonals instead of five).

Therefore, matrix A is positive-definite. For such a matrix, a standard iterative solver for large,
sparse and symmetric linear systems, such as the conjugate gradient method, does not meet
with serious difficulties.

Indeed, a convergence analysis of the conjugate gradient algorithm (Golub and van Loan
[8]) shows that its time complexity is O(N
m), where N=Nx ·Ny is the size of A and m is the
condition number of A, defined as ��A ��2��A−1��2. For our scheme we are able to prove the
following result on the conditioning of the linear system.

Theorem 2
The condition number of matrix A is of polynomial type

Figure 3. Fully rotated grid with resolution 180×90 grid points, NP latitude 0.05.
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Figure 4. Contour lines of the error on the retrieved geopotential height after 5 days of simulation;
slightly rotated grid 360×180, Dt=10 min, Courant max:1.4.

Table I. Grid 180×90—NP latitude p/2−0.05 rad; Tmax=24 h. First- and second-
order scheme with cubic interpolation (Schemes 1 and 2): comparison of the error

indicators for F.

Scheme 2Dtu Scheme 1

l�(F)l2(F)l�(F) l1(F)l1(F) l2(F)

0.140e−2 0.936e−3 0.102e−2 0.141e−20 10 0.899e−3 0.978e−3
0.429e−20.316e−20.293e−20.422e−230 0.282e−2 0.305e−2

0.942e−2 0.623e−2 0.673e−2 0.960e−260 0.602e−2 0.652e−2

0.114e−1 0.125e−10.5 10 0.114e−1 0.125e−1 0.179e−10.179e−1
0.326e−1 0.541e−10.358e−10.541e−130 0.326e−1 0.358e−1

0.666e−1 0.10960 0.601e−1 0.666e−1 0.109 0.601e−1

0.233e−10.212e−1 0.345e−10.345e−11 10 0.212e−1 0.233e−1
0.106 0.573e−1 0.636e−130 0.1060.572e−1 0.636e−1
0.199 0.975e−1 0.11060 0.1990.974e−1 0.109
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Table II. Grid 180×90—NP latitude p/2−0.05 rad; Tmax=24 h. First- and second-
order scheme with cubic interpolation (Schemes 1 and 2): comparison of the error

indicators for v.

Dt Scheme 1 Scheme 2u

l1(v) l2(v) l�(v) l1(v) l2(v) l�(v)

10 0.307e−2 0.352e−2 0.452e−2 0.353e−2 0.380e−20 0.467e−2
30 0.876e−2 0.982e−2 0.125e−1 0.100e−1 0.107e−1 0.131e−1
60 0.145e−1 0.175e−1 0.242e−1 0.174e−1 0.196e−1 0.259e−1

0.5 10 0.368e−1 0.418e−1 0.532e−1 0.368e−1 0.418e−1 0.532e−1
30 0.103 0.115 0.144 0.103 0.115 0.144
60 0.190 0.209 0.255 0.190 0.209 0.255

10 0.675e−1 0.771e−1 0.976e−11 0.679e−1 0.773e−1 0.977e−1
30 0.181 0.202 0.247 0.182 0.202 0.247
60 0.315 0.344 0.408 0.317 0.345 0.408

Table III. Grid 180×90—Tmax=120 h. Scheme 1: error indicators for F and v for different values
of the implicitness parameter.

Dt Courant l1(F) l2(F) l�(F) l1(v)u l2(v) l1�(v)

NP latitude p/2−0.05
10 0.4 0.446e−20 0.488e−2 0.724e−2 0.140e−1 0.163e−1 0.212e−1
30 1.2 0.128e−1 0.141e−1 0.214e−1 0.414e−1 0.476e−1 0.609e−1
60 2.5 0.268e−1 0.282e−1 0.377e−1 0.831e−1 0.939e−1 0.224

10 0.4 0.505e−1 0.562e−1 0.926e−10.5 0.134 0.183 0.226
30 1.2 0.116 0.131 0.244 0.398 0.428 0.493
60 2.5 0.165 0.187 0.351 0.595 0.627 0.695

10 0.4 0.859−1 0.965−1 0.173 0.284 0.3121 0.371
30 1.2 0.164 0.185 0.349 0.581 0.618 0.688
60 2.5 0.195 0.221 0.407 0.748 0.783 0.825

NP latitude 0.05
10 6.0 0.443e−20 0.485e−2 0.715e−2 0.139e−1 0.162e−1 0.213e−1
30 18.0 0.127e−1 0.140e−1 0.213e−1 0.413e−1 0.475e−1 0.609e−1
60 36.0 0.273e−1 0.287e−1 0.368e−1 0.939e−1 0.984e−1 0.194

10 6.0 0.505e−1 0.561e−1 0.9260.5 0.163 0.182 0.226
30 18.0 0.116 0.131 0.244 0.397 0.427 0.493
60 36.0 0.165 0.186 0.351 0.593 0.627 0.698

10 6.0 0.859e−1 0.964e−1 0.1731 0.283 0.311 0.372
30 18.0 0.164 0.185 0.349 0.584 0.618 0.688
60 36.0 0.195 0.221 0.407 0.750 0.784 0.855
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Table IV. Grid 360×180—Tmax=120 h. Scheme 1: error indicators for F and v for different values
of the implicitness parameter.

Courant l�(v)Dtu l2(v)l1(v)l�(F)l2(F)l1(F)

NP latitude p/2−0.05
0.466e−2 0.508e−2 0.218e−10.724e−2 0.161e−1 0.175e−10 10 1.4

0.623e−10.514e−10.477e−10.215e−10.146e−10.133e−14.230
0.1740.269e−1 0.284e−1 0.332e−1 0.996e−1 0.10460 8.5

1.4 0.566e−1 0.562e−1 0.927e−1 0.164 0.1830.5 10 0.266
30 4.2 0.116 0.131 0.244 0.398 0.428 0.493

0.267 0.595 0.628 0.6950.18760 8.5 0.165

0.3720.3120.2850.1730.966e−10.861e−11 10 1.4
30 4.2 0.164 0.185 0.349 0.585 0.619 0.688

0.195 0.8530.221 0.407 0.753 0.78460 8.5

NP latitude 0.05
0 10 24 0.457e−2 0.500e−2 0.722e−2 0.155e−1 0.170e−1 0.216e−1

0.22930 0.464e−1 0.505e−10.215e−10.144e−10.131e−173
0.972e−1 0.101 0.92960 146 0.273e−1 0.287e−1 0.354e−1

10 0.2260.1820.1630.926e−10.561e−10.505e−1240.5
0.4280.3970.2440.131 0.4940.1167330

146 0.165 0.186 0.351 0.597 0.627 0.97060

0.860e−1 0.965e−1 0.173 0.3720.285 0.3121 10 24
73 0.164 0.185 0.349 0.584 0.619 0.68930

60 146 0.195 0.785 0.9650.7540.4070.221

m(A)=O(N2)

where N is the dimension of A.

As a consequence of this statement, the number of iterations required in the solution of the
linear system by conjugate gradients is O(N).

The proof of this theorem is quite tedious and is left to Appendix A.
A suitable conjugate gradient (CG) solver has been developed, optimized for the structure of

the matrix at hand. Some preconditioners were also considered to speed up convergence, but
they did not prove effective, as expected from the presented analysis of the condition number
of the matrix. Owing to the large dimension of A, we just preprocessed the elements of the
matrix, in order to increase the computational accuracy. Then we introduced a simple diagonal
preconditioner, D=diag(ai,i

−1/2) and we define

A. =DAD

Matrix A. is still symmetric and positive definite; moreover âi,i=1 for each i.
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5. NUMERICAL EXPERIMENTS

In this section we show experiments performed with the new numerical scheme devised based
on two test problems proposed by Williamson et al. [9]. In the last few years, this set had been
used for the validation of several shallow waters numerical models of the atmosphere (e.g.
Swarztrauber [10]). Our first test is a steady state solution to the non-linear shallow water
equations, i.e. a solid body rotation or zonal flow with the corresponding geostrophic height
field. It involves the complete set of equations and has been chosen also to provide a
benchmark for computer timing. The test is comprised of an initial height profile (for
simplicity, a cosine bell), which rotates with constant angular velocity V around the Earth axis
(through the Poles) and we consider this rotation in a spherical co-ordinate system (l, 8),
having its North Pole at point P (not coinciding with the physical North Pole (NP) in general).
If (0, 80) are NP co-ordinates in this system, the analytical solution to this test problem is
given by

F=F0−
�
VRu0+

u0
2

2
n

(cos l cos 8 sin 80+sin 8 cos 80)2 (23)

Figure 5. Contour lines of the error on the retrieved velocity (u component) after 5 days of simulation
for the case of Figure 4.
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Figure 6. Contour lines of the absolute error on the retrieved velocity (6 component) after 5 days of
simulation for the case of Figure 4.

whereas wind components are

u=u0[cos 8 cos 80+cos l sin 8 sin 80]

6= −u0 sin l sin 80 (24)

and where u0=2pR/12 days and F0=2.94×104 m2 s−2.
Figures 1–3 show contour lines of the analytical solution for F and u in the absence of grid

rotation.
We tested our model on a slightly rotated grid (80=p/2−0.05 rad) and on a full rotated

grid (80=0.05 rad). This is Problem 2 described in Williamson et al. [9].
In both cases, executions were made for several values of Dt and for two grid resolutions:

180×90 grid points (corresponding to 2° resolution in both directions) and 360×180 grid
points (1° resolution). Figure 4 shows an example of rotated grid with 2° resolution.

The global relative errors on the retrieved fields in L1-, L2- and L�-norms (indexes l1, l2, l�)
have been calculated after 5 days of simulation. We recall here their definition for the case of
F
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l1=
%
i, j

�Fi, j−Fi, j
true�

%
i, j

�Fi, j
true�

l2=Ã
Ã

Ã

Á

Ä

%
i, j

(Fi, j−Fi, j
true)2

%
i, j

(Fi, j
true)2

Ã
Ã

Ã

Â

Å

1/2

l�=max
i, j

�Fi, j−Fi, j
true�

�Fi, j
true�

The same error measures indicators l1(6), l2(6), l�(6) were evaluated for the velocity field.
Tables I and II compare the accuracy of the two schemes for the evaluation of the

Lagrangian terms: runs were made for several time steps values and implicitness parameters
and confirm that the second-order in time scheme does not introduce significant improve-
ments, as expected for this stationary test case. As a result, in the subsequent tests we

Figure 7. Contour lines of the error on the retrieved geopotential height after 5 days of simulation; fully
rotated grid 360×180, Dt=10 min, Courant max:24.
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Figure 8. Contour lines of the error on the retrieved velocity (u component) after 5 days of simulation
for the case of Figure 7.

considered only the first-order scheme. Tables III and IV show that the accuracy of the
method does not depend on the rotation of the numerical grid (as in the tests shown in Amato
and Carfora [7]). The case of a full-rotated grid, with higher Courant numbers, gives the same
error levels of a slightly rotated grid. The same tables also compare the effects of the choice
of the implicitness parameter: in partial disagreement with the theoretical stability analysis, the
best performance is for u1=0, i.e. for explicit Coriolis terms. Indeed, the instability due to
Coriolis terms leads to very small effects, as proved by the estimate of the amplification matrix
given in Theorem 1 (22), due to the order of the Coriolis parameter: f=O(10−5). Only in
experiments where the angular velocity of Earth rotation was increased by two or three orders
of magnitude we have seen the effects of this instability.

Figures 4–6 show the error fields (difference between retrieved and true values) for the
retrieved geopotential height and wind components in the case of a slightly rotated grid (NP
latitude p/2−0.05 rad); Figures 7–9 show the corresponding error fields in the case of a fully
rotated grid (NP latitude 0.05 rad).

It is possible to see that the main indicators (maximum, minimum and location of the error)
are quite the same, not depending on the grid rotation: this also means that the error is not
concentrated near the representational poles. In particular, for the geopotential height field,

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 527–558



SEMI-LAGRANGIAN METHOD FOR ATMOSPHERICAL SHALLOW WATER 551

the retrieved solution is smoother than the true one, with higher minima and lower maxima;
for the u component of the wind field there is in general a small underestimation, while for the
6 component the errors are quite evenly distributed. The main effect of the grid rotation, apart
from some perturbation near the representational poles (see the centre of Figures 8 and 9,
corresponding to the numerical NP), is a modification in the shape of the error fields,
particularly in the 6 component of wind velocity; however, such a modification does not affect
the level of the error, always between −0.4 and +0.4 m s−1.

Figure 9. Contour lines of the absolute error on the retrieved velocity (6 component) after 5 days of
simulation for the case of Figure 7.

Table V. Execution time depending on Dt. Grid resolution is 180×90, NP latitude
p/2−0.05.

Total time Lagrangian phaseDt System solving
(s)(s) (s)(min)

3885 750 306
10 560 156 373

356450 8020
35040 27862
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Table VI. Execution time depending on Dt. Grid resolution is 180×90, NP latitude
0.05.

Dt Total time System solvingLagrangian phase
(s)(s)(s)(min)

5 1278 657 565
1188 59610 563
1101 558 52820
928 54440 376

Table VII. Execution time depending on grid resolution. Time step is 10 min, NP
latitude p/2−0.05.

Total time System solvingLagrangian phaseGrid points
(s)(s)(s)

80 3790×45 37
560 156 373180×90

5060 990360×180 3915

Figure 10. Contour lines of the initial solution for the Rossby–Haurwitz test problem.

To conclude with this test case, let us present some results on the computational cost of the
method. It is not possible to simply define a ‘cost per cycle’ since in every cycle of the
numerical integration n sub-cycles are performed, where n is approximately equal to the
maximum value of Courant numbers on all grid points. Then it depends on the chosen time
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step, grid resolution and also on grid rotation. To evaluate the cost of the method, we
performed three set of runs: in the first set only the time step varies, while the grid resolution
is constant (180×90 grid points) and NP latitude is p/2−0.05 rad; in the second set again the

Figure 11. Contour lines of the retrieved solution after 1 day of integration.

Figure 12. Contour lines of the retrieved solution after 7 days of integration.
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Figure 13. Contour lines of the retrieved solution after 10 days of integration.

time step varies, but NP latitude is 0.05 rad to show the effects of high Courant numbers; in
the third set only the grid resolution varies, while time step (10%) and NP latitude (0.05) are
fixed.

Tables V, VI and VII show the execution time for the complete simulation (Tmax=120 h) for
the three set of runs. Tests were performed on an Alpha Server 2100/250. This machine, if used
as single processor, is rated at about 120 Mflop/s in the LINPACK benchmark.

It is possible to see (Table V) that, when Courant numbers are small, the computational cost
strongly decreases with the increasing time step: indeed, the evaluation of the Lagrangian terms
in the method does not require the sub-stepping procedure and the cost of this evaluation
depends (almost linearly) just on the performed cycles; while the cost for the solution of the
linear system is quite not dependent on the time step. This trend is completely confirmed by
the first three rows in Table V; the case Dt=40% is a little bit different: since in this case the
Courant numbers are somewhere greater than one, the use of the sub-stepping procedure
slightly increases the cost of the run.

Table VI presents the corresponding test for a different NP latitude: the same set of runs,
when Courant numbers are higher, shows a different trend: when the sub-stepping procedure
is widely used, the cost for the evaluation of the Lagrangian terms is no more linear decreasing
with the time step. However, it must be stressed that, also in this test where Table VII shows
the cost variations with increasing grid resolution: as could be expected, since the number of
grid points grows by a factor four, and the Courant numbers doubles, the cost approximately
increases by a factor eight.

The second group of results we present refer to a more complicated test problem, a
planetary scale Rossby–Haurwitz wave dominated by wave number four (Test no. 6 in
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Williamson et al. [9]). This is a frequently used meteorological test, but no analytical
solution is known. As the solution evolves, the flow field does not maintain its initial
structure, due to the impact of the horizontal resolution. Then, as suggested in Reference
[9], we qualitatively compare the results of the numerical integration with the reference
solutions presented in the literature. Figure 10 shows the initial state.

The time step for our integration is 180 s and the grid resolution is 1° (360×180 grid
points). Figures 11–13 show the retrieved solution for day 1, day 7 and day 10. As can be
seen in these maps, the phase of the wave structure is quite well represented, although there
is a tendency for some sharpening in the mid-latitude. The error field structure is very
similar to the literature tests, with a general erosion of zonal and meridional gradients.

With regard to conservation properties, the runs confirm the theoretical results: there is
an almost exact conservation (within the machine rounding) of the total geopotential height
during the iteration.

6. CONCLUSIONS

The present paper introduces a numerical method for the shallow water equations in the
atmosphere and evaluates the impact of its specific features on the overall performance of
the model. The numerical method is based on a mixed finite difference–finite volume
approximation of the equations, which results in conservation of the total geopotential
height. The momentum equation is discretized in its vectorial form. The advective terms are
treated in a semi-Lagrangian way and pressure and Coriolis terms in a semi-implicit way. A
splitting procedure is invoked to preserve symmetry of the algebraic system of equations.
Finally, the introduction of a sub-stepping procedure for the evaluation of the Lagrangian
terms allows us to increase the spatial and temporal accuracy. The resulting method is
stable for any choice of the time step provided that the implicitness parameter is in [0.5, 1].
The resulting matrix is sparse and structured, symmetric and positive definite, which makes
iterative methods for solving the system of equations very attractive.

As far as the different improvements are concerned, our conclusions are that the splitting
procedure is considerably useful to simplify the numerical scheme, whereas the vectorial
correction in the momentum equation has been shown to be of minor importance, due to
the sub-stepping procedure. For the reconstruction of the characteristic lines, the improve-
ment due to accurate spatial interpolation is evident; this is not the case for the second-
order in time algorithm. These results completely confirm those obtained in the study of
semi-Lagrangian treatment of advection on the sphere [7].
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APPENDIX A

Proof of Theorem 2
Since A is positive-definite, if we indicate its eigenvalues, using n, it is

m(A)=
nmax

nmin

Then, to locate the eigenvalues of A we consider the Gerschgorin circles

Cj=
!

z�C : �z−aj, j �5 %
k" j

�aj,k �"
For simplicity’s sake, we assume that H and F are constants in Equation (12); therefore, all

the coefficients will depend only on index j. Since the spectrum of A is contained in the union
of all the Cj, it is straightforward to see, from the definition of aj, j and aj,k, that

m(A)5
max

j
(Aj+2u2Dt2aj)

min
j

Aj

where we have posed

aj=C1+1/2, j+Ci−1/2, j+Di, j+1/2+Di, j−1/2=2
H
F

DxjDy
� 1
Dxj

2+
1

Dy2 cos
D8

2
�

Now, since Aj is the area of a cell centred at latitude 8j, as evaluated in Equation (4), it is
clear that

min
j

Aj=A1=2R sin
D8

2
Dx1

Moreover, since it is

Aj+2u2Dt2aj=
�

2R sin
D8

2
+4

H
F

u2 Dt2

Dy
cos

D8

2
n
Dxj+4

H
F

u2 Dt2Dy
Dxj

(25)

this quantity is a convex function of Dxj, which attains its absolute maximum at one of the
extrema j=1 or j=Ny/2.

Therefore, we have just to compare A1+2u2Dt2a1 with ANy/2
+2u2Dt2aNy/2

.
Recalling that Dxj=RDl cos 8j we have

Dx1=RDl sin
D8

2
, DxNy/2

=RDl cos
D8

2
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and it is easy to prove that the maximum of Equation (25) is reached for j=1. Indeed, after
some manipulation, one can see that, in the case u"0, the inequality

A1+2u2Dt2a1]ANy/2
+2u2Dt2aNy/2

is equivalent to the identity

R2FD8

2Hu2Dt2 sin2 D8

2
�

1−cos
D8

2
�

+cos2 D8

2
�

1−sin
D8

2
�
]0

where the only simplification we made is Dl=D8.
Thus, it is

m(A)5
A1+2u2Dt2a1

A1

and finally, using that D8=p/Ny and making the usual approximations for increasing Ny

sin
D8

2
:

D8

2
, cos

D8

2
:1−

�D8

2
�2

we obtain

A1=4R2� p

2Ny

�3

a1=2
H
F
�2Ny

p
+
� p

2Ny

��
1−

� p

2Ny

�2�n
so that

m(A)=O
�Ny+Ny

−1+Ny
−3

Ny
−3

�
=O(Ny

4)=O(N2)
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